Module 5: Logic circuits with DNA strand displacement (part 1)

CSE590: Molecular programming and neural

 computation.
Goal: Engineering embedded controllers for biochemical systems

Logic circuits using DNA strand displacement

Q:Why digital logic? Biology is not digital.
A: Because adherence to digital logic design has enabled incredibly complex, manmade information technology. We don't need to do exactly what biology does.

Q:Why DNA strand displacement?
A: Because it's a surprisingly powerful building block.

Basic rules

Short domains bind reversibly

3^{\prime}-AATTCA-5'

Long domains bind irreversibly

3^{\prime}-AATTCAGATCCACCCAAAGA-5'

DNA strand displacement mechanism

For a review see D.Y. Zhang and G. Seelig, Nature Chemistry (201I)

DNA strand displacement mechanism

For a review see D.Y. Zhang and G. Seelig, Nature Chemistry (20II)

DNA strand displacement mechanism

Strand displacement is initiated at the single-stranded toeholds. Toehold binding is a reversible process.

DNA strand displacement mechanism

Strand displacement proceeds through a branch migration. Branch migration is a random walk.

DNA strand displacement mechanism

Release of the output strand is (almost) irreversible in the absence of a toehold for the reverse reaction.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

Signals can propagate through multiple layers

The sequences of inputs and outputs can be completely independent.

OR logic / fan-in

OR logic / fan-in

OR logic / fan-in

OR logic / fan-in

AND logic

AND logic

?
$-{ }_{-}^{t} \xrightarrow{\text { t }} \rightarrow$
Input 2

In 2	\ln I	Out
0	0	0

AND logic

?

$$
\mathrm{t}_{\mathrm{t}}^{-\frac{2}{\mathrm{t} \text { put } 2}}-
$$

AND logic

AND logic

Input I

AND logic

AND logic

AND logic

AND logic

AND logic

$?$

AND logic

AND logic

AND logic

AND logic

Why is NOT difficult?

Absence of a signal could be "NOT" or could simply mean that computation hasn't occured yet.

Dual-rail logic: AND and OR are sufficient for feed-forward digital circuits

Replace X by the pair (X0,XI):

X0 on: logical "0"
XI on: logical" I "
X0, XI off:
not yet computed
X0, XI on:
error

Single wire circuit using NOT,AND, OR, NAND, ... can be replaced by a dual rail representation using AND and OR only. This implementation requires maximally $2 x$ as many gates.

Differences and similarities between electronic and molecular circuits

I. Lack of spatial isolation: All gates and signals diffuse in solution and interact stochastically.
2. Computation energy and non-reusable gates: Both inputs and gates are consumed as the circuit is evaluated by cascade reactions, so they cannot be reused.
3. Data encoding: Information is encoded in the sequences and concentration of biomolecules.
4. Lack of clear hardware software separation: Gates and circuits come pre-programmed for the specific computation they are meant to carry out.
5. Speed of computation: A circuits evaluation under typical reaction conditions takes minutes to hours.
6. Need for dual-rail logic: NOT is difficult to implement

visual DSD: A tool for simulating DNA strand displacement systems

http://research.microsoft.com/en-us/projects/dna/
Use links to "web simulator" and "tutorial" for hw.

Phillips, Cardelli. Royal Society Interface, 2009
Lakin, Youssef, Polo, Emmott, Phillips. Bioinformatics, 201I

visual DSD: A tool for simulating DNA strand displacement systems

visual DSD: A tool for simulating DNA strand displacement systems

Slide credit: Andrew Phillips (MSR)

visual DSD: A tool for simulating DNA strand displacement systems

Slide credit: Andrew Phillips (MSR)

visual DSD: A tool for simulating DNA strand displacement systems

Strand::=

Segment::=

Upper strand
Lower strand

Double stranded complex with overhangs

Segment concatenation

:

$=$

19
Slide credit: Andrew Phillips (MSR)

visual DSD: Syntax of strands and complexes

\qquad

Slide credit: Appdrew Phillips (MSR)

visual DSD: Reduction rules

Slide credit: Appdrew Phillips (MSR)

